STPS10L60C

Power Schottky rectifier

Main product characteristics

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2 \times 5 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{RRM}}$	60 V
$\mathrm{~T}_{\mathrm{j}(\max)}$	$150^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{F}(\max)}$	0.52 V

Features and benefits

- Low forward voltage drop
- Negligible switching losses
- Insulated package: TO-220FPAB Insulating voltage $=2000$ V DC Capacitance $=12 \mathrm{pF}$
- Avalanche capability specified

Description

Dual center tap Schottky rectifier suited for switch mode power supplies and high frequency DC to DC converters.
Packaged in TO-220FPAB and D^{2} PAK, this device is intended for use in high frequency inverters.

Characteristics

Symbol	Parameter				Value	Unit
$\mathrm{V}_{\text {RRM }}$	Repetitive peak reverse voltage				60	V
$\mathrm{I}_{\mathrm{F} \text { (RMS) }}$	RMS forward current				30	A
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Average forward current	TO220FPAB	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=130^{\circ} \mathrm{C} \\ & \delta=0.5 \end{aligned}$	Per diode Per device	$\begin{gathered} 5 \\ 10 \end{gathered}$	A
$\mathrm{I}_{\text {FSM }}$	Surge non repetitive forward current		tp $=10 \mathrm{~ms}$ Sinusoidal		180	A
$\mathrm{I}_{\text {RRM }}$	Repetitive peak reverse current		tp $=2 \mu \mathrm{~s}$ square $\mathrm{F}=1 \mathrm{kHz}$		1	A
$\mathrm{P}_{\text {ARM }}$	Repetitive peak avalanche power		tp $=1 \mu \mathrm{~s} \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		4000	W
$\mathrm{T}_{\text {stg }}$	Storage temperature range				$\begin{gathered} -65 \text { to }+ \\ 175 \end{gathered}$	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum operating junction temperature ${ }^{(1)}$				150	${ }^{\circ} \mathrm{C}$
dV/dt	Critical rate of rise reverse voltage				10000	V/ $/ \mathrm{s}$

1. $\frac{d P \operatorname{tot}}{d T j}<\frac{1}{R \operatorname{th}(\mathrm{j}-\mathrm{a})}$ thermal runaway condition for a diode on its own heatsink

Table 1. Thermal resistance

Symbol	Parameter		Value	Unit
$\mathrm{R}_{\text {th (j-c) }}$	Junction to case	Per diode	4.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	TO-220FPAB	Total	3.5	
$\mathrm{R}_{\mathrm{th}(\mathrm{c})}$		Coupling	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

When the diodes 1 and 2 are used simultaneously:
$\Delta \mathrm{Tj}^{(\text {diode } 1)}=\mathrm{P}($ diode1 $) \times \mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})}($ Per diode $)+\mathrm{P}\left(\right.$ diode 2) $\times \mathrm{R}_{\mathrm{th}(\mathrm{c})}$
Table 2. Static electrical characteristics (per diode)

Symbol	Parameter	Tests Conditions		Min.	Typ.	Max.	Unit
$I_{R}{ }^{(1)}$	Reverse leakage current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$			220	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			45	60	mA
$V_{F}{ }^{(1)}$	Forward voltage drop	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}$			0.55	V
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}$		0.43	0.52	
		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}$			0.67	
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}$		0.55	0.64	

1. Pulse test: $\mathrm{tp}=380 \mu \mathrm{~s}, \delta<2 \%$

To evaluate the conduction losses use the following equation:
$\mathrm{P}=0.44 \times \mathrm{I}_{\mathrm{F}(\mathrm{AV})}+0.0091 \times \mathrm{I}_{\mathrm{F}}{ }^{2}(\mathrm{RMS})$

Figure 1. Average forward power dissipation Figure 2. Average forward current versus versus average forward current (per diode)

Figure 3. Normalized avalanche power derating versus pulse duration

Figure 4. Normalized avalanche power derating versus junction temperature

Figure 5. Non repetitive surge peak forward current versus overload duration (maximum values, per diode) (TO-220FPAB)

Figure 6. Relative variation of thermal transient impedance junction to case versus pulse duration (TO-220FPAB)

Figure 7. Relative variation of thermal transient impedance junction to case versus pulse duration (D^{2} PAK)

Figure 9. Junction capacitance versus reverse voltage applied (typical values, per diode)

Figure 8. Reverse leakage current versus reverse voltage applied (typical values, per diode)

Figure 10. Forward voltage drop versus forward current (maximum values, per diode)

Figure 11. Thermal resistance junction to ambient versus copper surface under tab (Epoxy printed circuit board FR4, copper thickness: $35 \mu \mathrm{~m})\left(\mathrm{D}^{2} \mathrm{PAK}\right)$

2 Package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.55 Nm
- Maximum torque value: 0.70 Nm

Table 3. TO-220FPAB dimensions

Table 4. $\quad D^{2}$ PAK dimensions

					Dim	ions	
			Ref	Mill	ters		
				Min.	Max.	Min.	Max.
	- -		A	4.40	4.60	0.173	0.181
	E		A1	2.49	2.69	0.098	0.106
	$\text { L2 } \downarrow$		A2	0.03	0.23	0.001	0.009
			B	0.70	0.93	0.027	0.037
	9) 0	---	B2	1.14	1.70	0.045	0.067
	$43 \square 1!$		C	0.45	0.60	0.017	0.024
			C2	1.23	1.36	0.048	0.054
	\rightarrow B		D	8.95	9.35	0.352	0.368
	G		E	10.00	10.40	0.393	0.409
			G	4.88	5.28	0.192	0.208
		π	L	15.00	15.85	0.590	0.624
			L2	1.27	1.40	0.050	0.055
		* flat zone no lessthan 2mı	L3	1.40	1.75	0.055	0.069
			M	2.40	3.20	0.094	0.126
			R				typ.
			V2	0°	8°	0°	8°

Figure 12. Footprint (dimensions in millimeters)

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

3 Ordering information

Type	Marking	Package	Weight	Base qty	Delivery mode
STPS10L60CFP	STPS10L60CFP	TO-220FPAB	2 g	50	Tube
STPS10L60CG	STPS10L60CG	D^{2} PAK	1.48 g	50	Tube
STPS10L60CG-TR	STPS10L60CG	D^{2} PAK	1.48 g	1000	Tape and reel

4 Revision history

Date	Revision	Description of Changes
Jul-2003	$3 C$	Last release.
26-Mar-2007	4	Removed ISOWATT package. Added D²PAK package.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

